949 research outputs found

    Design and optimization of a compact laser-driven proton beamline

    Get PDF
    Laser-accelerated protons, generated by irradiating a solid target with a short, energetic laser pulse at high intensity (I > 1018W·cm-2), represent a complementary if not outperforming source compared to conventional accelerators, due to their intrinsic features, such as high beam charge and short bunch duration. However, the broadband energy spectrum of these proton sources is a bottleneck that precludes their use in applications requiring a more reduced energy spread. Consequently, in recent times strong effort has been put to overcome these limits and to develop laser-driven proton beamlines with low energy spread. In this paper, we report on beam dynamics simulations aiming at optimizing a laser-driven beamline - i.e. a laser-based proton source coupled to conventional magnetic beam manipulation devices - producing protons with a reduced energy spread, usable for applications. The energy range of investigation goes from 2 to 20 MeV, i.e. the typical proton energies that can be routinely obtained using commercial TW-power class laser systems. Our beamline design is capable of reducing the energy spread below 20%, still keeping the overall transmission efficiency around 1% and producing a proton spot-size in the range of 10 mm2. We briefly discuss the results in the context of applications in the domain of Cultural Heritage

    Design and optimization of a laser-PIXE beamline for material science applications

    Get PDF
    Multi-MeV proton beams can be generated by irradiating thin solid foils with ultra-intense (>10^18 W/cm^2) short laser pulses. Several of their characteristics, such as high bunch charge and short pulse duration, make them a complementary alternative to conventional radio frequency-based accelerators. A potential material science application is the chemical analysis of cultural heritage (CH) artifacts. The complete chemistry of the bulk material (ceramics, metals) can be retrieved through sophisticated nuclear techniques such as particle-induced X-ray emission (PIXE). Recently, the use of laser-generated proton beams was introduced as diagnostics in material science (laser-PIXE or laser-driven PIXE): Coupling laser-generated proton sources to conventional beam steering devices successfully enhances the capture and transport of the laser-accelerated beam. This leads to a reduction of the high divergence and broad energy spread at the source. The design of our hybrid beamline is composed of an energy selector, followed by permanent quadrupole magnets aiming for better control and manipulation of the final proton beam parameters. This allows tailoring both, mean proton energy and spot sizes, yet keeping the system compact. We performed a theoretical study optimizing a beamline for laser-PIXE applications. Our design enables monochromatizing the beam and shaping its final spot size. We obtain spot sizes ranging between a fraction of mm up to cm scale at a fraction of nC proton charge per shot. These results pave the way for a versatile and tunable laserPIXE at a multi-Hz repetition rate using modern commercially available laser systems

    High intensity effects of fixed target beams in the CERN injector complex

    Get PDF
    The current fixed target (FT) experiments at CERN are a complementary approach to the Large Hadron Collider (LHC) and play a crucial role in the investigation of fundamental questions in particle physics. Within the scope of the LHC Injectors Upgrade (LIU), aiming to improve the LHC beam production, the injector complex will be significantly upgraded during the second Long Shutdown (LS2). All nonLHC beams are expected to benefit from these upgrades. In this paper, we focus on the studies of the transverse instability in the Proton Synchrotron (PS), currently limiting the intensity of Time-Of-Flight (ToF) type beams, as well as the prediction of the impact of envisaged hardware modifications. A first discussion on the effect of space charge on the observed instability is also being presented

    Study of the beam-cavity interaction in the PS 10 MHz RF system

    Get PDF
    The eleven main accelerating cavities of the Proton Synchrotron (PS) at CERN consist of two ferrite-loaded coaxial lambda/4 resonators each. Both resonators oscillate in phase, as their gaps are electrically connected by short bars. They are in addition magnetically coupled via the bias loop used for cavity tuning. The cavities are equipped with a wide-band feedback system, limiting the beam loading, and a further reduction of the beam induced voltage is achieved by relays which short-circuit each half-resonator gap when the cavity is not in use. Asymmetries of the beam induced voltage observed in the two half-cavities indicate that the coupling between the two resonators is not as tight as expected. The total cavity impedance coupling to the beam may be affected differently by the contributions of both resonators. A dedicated measurement campaign with high-intensity proton beam and numerical simulation have been performed to investigate the beam-cavity interaction. This paper reports the result of the study and the work aiming at the development of a model of the system, including the wide-band feedback, which reproduces this interaction

    Design of the Target Dump Injection Segmented (TDIS) in the framework of the High Luminosity Large Hadron Collider (HL-LHC) project

    Get PDF
    The High Luminosity Large Hadron Collider (HL-LHC) Project at CERN calls for increasing beam brightness and intensity. In this scenario, most equipment has to be redesigned and rebuilt. In particular, beam intercepting devices (such as dumps, collimators, absorbers and scrapers) have to withstand impact or scraping of the new intense HL-LHC beams without failure. Furthermore, minimizing the electromagnetic beam-device interactions is also a key design driver since they can lead to beam instabilities and excessive thermo-mechanical loading of devices. In this context, the present study assesses the conceptual design quality of the new LHC injection protection absorber, the Target Dump Injection Segmented (TDIS), from an electromagnetic and thermo-mechanical perspective. This contribution analyzes the thermo-mechanical response of the device considering two cases: an accidental beam impact scenario and another accidental scenario with complete failure of the RFcontacts. In addition, this paper presents the preliminary results from the simulation of the energy deposited by the two counter-rotating beams circulating in the device

    The truncated exponential polynomials, the associated Hermite forms and applications

    Get PDF
    We discuss the properties of the truncated exponential polynomials and develop the theory of new form of Hermite polynomials, which can be constructed using the truncated exponential as a generating function. We derive their explicit forms and comment on their usefulness in applications, with particular reference to the theory of flattened beams, used in optics

    Study of collective effects in the CERN FCC-ee top-up booster

    Full text link
    The CERN FCC-ee top-up booster synchrotron will accelerate electrons and positrons from an injection energy of 20 GeV up to an extraction energy between 45.6 GeV and 182.5 GeV depending on the operation mode. These accelerated beams will be used for the initial filling of the high-luminosity FCC-ee collider and for keeping the beam current constant over time using continuous top-up injection. Due to the high-intensities of the circulating beams, collective effects may represent a limitation in the top-up booster. In this work we present a first evaluation of the impedance model and the effects on beam dynamics. Methods to mitigate possible instabilities will be also discussed

    Review of impedance-induced instabilities and their possible mitigation techniques

    Full text link
    In this paper a review of some important impedance-induced instabilities are briefly described for both the longitudinal and transverse planes. The main tools used nowadays to predict these instabilities and some considerations about possible mitigation techniques are also presented
    • …
    corecore